» » Собираем цап. Параллельные цап. Мультибитовый вариант схемы

Собираем цап. Параллельные цап. Мультибитовый вариант схемы

Вот электрическая схема самодельного цифроаналогового преобразователя, которая использует микросхему PCM2707 - готовый модуль USB DAC. Он определяется как USB Audio Class 1.0 устройство и не требует каких-либо особых драйверов.

Схема изготовлена по даташиту, только добавлено пару индикаторных светодиодов, чтобы было видно когда устройство выключено и подключено к компьютеру. Ещё поставили дроссель на USB 5V линии, чтобы подавить любой высокочастотный шум, теоретически способный просочиться по питанию DAC.

При монтаже ЦАП старайтесь использовать радиодетали для поверхностного монтажа. Большинство пассивных компонентов (резисторы, конденсаторы, ферритовые кольца) типоразмера 0805.

На микросхеме PCM2707 имеется возможность задействовать кнопки управления громкости, воспроизведения, паузы и пропуска песни на компьютере, к которой блок присоединен. В данном варианте не планируется использовать эти функции, но добавлены контактные штыри на случай, если задействуем чего-то в будущем.

А это вид собранной печатной платы декодера USB DAC, которая сразу же заработала при первом подключении. В данном случае используются наушники для прослушивания музыки, но можно подключить любой самодельный усилитель .

В последние десятилетия цифровая аудиотехника развивается стремительными темпами. Помимо появления широкого спектра цифровых усилителей, также появляются всё новые форматы цифрового аудио. Любителей качественного звука это с одной стороны радует повышением качества звучания, с другой стороны огорчает, так как из-за введения новых форматов приходится постоянно обновлять свою аудиосистему.

Спасти положение может наличие в системе отдельного цифро-аналогового преобразователя (ЦАП). Для перехода на новый формат придётся обновить только его, а порой достаточно будет обновления лишь одного его блока, например приёмника S/PDIF. Кроме того, автономный ЦАП имеет ещё одно преимущество - является универсальным блоком и позволяет подключать к вашей аудиосистеме различные цифровые источники CD / DVD-плеера, компьютер или сетевой проигрыватель.

В данной статье приводится описание схемы и конструкции ЦАП, способного работать с частотами дискретизации 32-96 кГц. Автор намеренно не реализовал поддержку стандарта 192 кГц, так как считает его малораспространённым. Основной упор в данном аппарате сделан на бескомпромиссное качество. Использованная элементная база не очень новая, но доступная. Наверняка, у многих радиолюбителей «в закромах» найдётся большинство комплектующих, что позволит без проблем повторить данную конструкцию или доработать имеющийся ЦАП до более высокого уровня.

ХАРАКТЕРИСТИКИ ЦАП

Функции и возможности:

  • коаксиальный и оптический входы,
  • работает с частотой дискретизации 32-96 кГц,
  • 2-разрядный индикатор частоты дискретизации,
  • 8-кратная передискретизация,
  • 24-битный цифровой фильтр,
  • 24-битные цифро-аналоговые преобразователи,
  • цифровой деэмфазис (коррекция предискажений),
  • переключаемые аналоговые фильтры третьего порядка (Бесселя и Баттерворта),
  • раздельное питание цифровых и аналоговых цепей.

Технические параметры:

номинальное выходное напряжение 2.1 V (RMS)
номинальное входное напряжение
коаксиального входа
0.5 V (сопротивление 75 Ω)
частотный диапазон (–3 dB) 0–fs/2 (fs=32/44.1/48 kHz)
0–42 kHz (fs=88.2/96 kHz)
граничная частота аналогового фильтра 26 kHz (Баттерворта для частот fs=32/44.1/48 kHz)
42 kHz (Бесселя для частот fs=88.2/96 kHz)
выходное сопротивление 100 Ω
отношение сигнал/шум ≥ 114 dBa
искажения+шум 0.0016% (44.1 kHz, 16-bit)
0.001% (48 kHz, 24-bit)
0.0008% (96 kHz, 24-bit, b=22 kHz)
коэффициент интермодуляционных искажений
(60 Hz/7 kHz, 0 dB)
0.0035%
разделение каналов (1 kHz) >115 dB
динамический диапазон >100 dB

Измерения проводились при следующих положениях переключателей (см. далее):

s1 s2 s3 s4
-1 off -1 on -1 on -1 off
-2 off -2 off -2 on -2 off
-3 off -3 off -3 on -3 off
-4 on -4 off -4 off -4 on
-5 on
-6 off
-7 off
-8 off

СТРУКТУРНАЯ СХЕМА

Конструкция ЦАП выполнена в виде 4-х блоков, каждый из которых собран на отдельной печатной плате:

  • блок питания ± 12 В и +5 В,
  • цифровой приёмник и драйвер дисплея,
  • 2-х разрядный дисплей,
  • цифровой фильтр, непосредственно цифро-аналоговый преобразователь и выходные аналоговые фильтры.

Блок-схема показана на рисунке:

увеличение по клику

Источник питания состоит из стабилизатора напряжения +5 В для цифровых схем (приемник и цифровой фильтр) и стабилизатора напряжения ±12 В для питания аналоговых цепей и реле. Кроме того из этих напряжений с помощью дополнительных стабилизаторов получаются напряжения ±5 В для питания микросхемы ЦАП.

На плате приёмника цифровых аудио данных размещён также драйвер дисплея, который позволяет контролировать частоту тактового сигнала. Сам дисплей состоит из двух 7-сегментных светодиодных модулей для индикации частоты дискретизации: 32 кГц, 44 кГц (в реальности 44,1 кГц), 48 кГц, 88 кГц (в реальности 88,2 кГц), или 96 кГц.

Для аппаратной конфигурации приёмника используется 4-х контактный DIP-переключатель. Образцовый тактовый сигнал формирует высокоточный кварцевый генератор с частотой 6,144МГц для определения частоты входного сигнала и системы фазовой автоподстройки частоты (ФАПЧ).

На выходе приёмника данные о частоте дискретизации и биты состояния присутствуют в смешанном виде. Для их разделения используется микросхема IC5. Выходные данные записываются в регистры микросхемы и в нормальном режиме выходные сигналы статические. Такая индикация (против динамической) требует гораздо меньшего тока и, как следствие, создает меньше помех.

Для соединения платы цифрового приёмника с платой дисплея используется 10-ти жильный плоский кабель. Соединение платы приёмника с платой ЦАП и выходных фильтров осуществляется с помощью 16-ти жильного плоского кабеля. Этим же кабелем с платы приёмника передаётся напряжение +5В для питания цифрового фильтра, а также сигнал переключения на выходной фильтр с удвоенной частотой среда, если на входе обнаружен сигнал с частотами 88,2 кГц или 96 кГц.

Сигнал «MUTE» (приглушение) формируется при отсутствии сигнала на входе приёмника или когда система ФАПЧ не может выполнить захват частоты. Он снимается с вывода 5 (ERF) микросхемы IC1 и используется для управления выходным реле (отключает выход ЦАП).

Сигнал сброса приемника и цифрового фильтра формирует цепь R6-C13 и инвертируется микросхемой IC5. Сигнал наличия деэмпфазиса с цифрового приёмника передаётся цифровому фильтру, который и обеспечивает коррекцию искажений. Двенадцать DIP-переключателей позволяют задать различные параметры фильтра: форматы входных и выходных данных, количество битов, характеристику фильтра и другие.

Цифровой фильтр управляет двумя микросхемами ЦАП: одна для левого и вторая для правого каналов. Выходной сигнал каждого из ЦАП является токовым. Такой выбор был сделан не случайно. Токовый выход позволяет получить хорошую линейность, низкий уровень шума, малое напряжение смещения и высокую скорость нарастания. Да, обычно ЦАП с токовым выходом стоят дороже, но и качество звучания (как правило) обеспечивают на более высоком уровне.

Аналоговый фильтр на выходе необходим для удаления из выходного сигнала остатков продуктов передискретизации и высокочастотного шума. Для расширения диапазона частот дискретизации в схеме использованы два выходных фильтра с разными частотами среза. Переключение фильтров осуществляется с помощью двух реле. Так как сопротивление фильтров достаточно велико, чтобы не ухудшать разделение каналов потребовалось использовать отдельное реле для каждого канала.

Выходное сопротивление фильтра составляет всего 100Ом, поэтому для реализации функции «MUTE» (приглушение) можно обойтись одним реле без ухудшения характеристик устройства. Эта функция позволяет избавиться от щелчков и шумов на выходе устройства во время переходных процессов при включении или ошибках чтения входных данных.

ПРИНЦИПИАЛЬНАЯ СХЕМА (ЦИФРОВОЙ ПРИЁМНИК)

Принципиальная схема блока цифрового приёмника и драйвера дисплея представлена на рисунке:

увеличение по клику

Главной задачей цифрового приёмника IC1 является декодирование потока данных в формате S/PDIF в последовательный формат данных, который может быть передан микросхемам ЦАП. Микросхема приёмника расположена на отдельной печатной плате таким образом, чтобы коаксиальный и оптический входные разъемы могли быть размещены в наиболее удобном месте на корпусе устройства.

Входной импеданс, который имеет традиционное для коаксиального входа значение в 75Ом, определяется номиналом резистором R1. Оптический вход реализован на широко распространённой микросхеме IC2. Сигнал с её выхода подается на вход IC1 через делитель R1-R2, значения резисторов которого выбираются таким образом, что сигнал на R1 был немного больше (0,6 В), чем стандартное значение для коаксиального входа (0,5 В).

При использовании оптического входа необходимо установить перемычку JP1. Коаксиальный вход при этом использоваться не может!

Резисторы R7-R10 необходимы для устранения высокочастотного «звона», вызванного ёмкостной нагрузкой образованной соединительным шлейфом и входной ёмкостью цифрового фильтра.

Режим работы цифрового приёмника задаётся уровнями на входах М0-М3. Подробнее о режимах работы можно прочитать в справочном руководстве на микросхему CS8414. Рекомендуемым режимом является I2S, так как при этом режиме число битов в принципе не фиксируется: это могут быть 16-битные данные или 24-битные. Поэтому необходимо установить DIP-переключатели S1 в положение S1-4 ON (M1 = 1), а остальные ВЫКЛ (М0 = М2 = М3 = 0).

Возможность выбора различных режимов работы цифрового приёмника была заложена с учетом возможного будущего расширения функционала или обновления конструкции. Так же это позволяет использовать плату приёмника для совместной работы с другими типами ЦАП.

Для снижения уровня шумов и помех микросхема кварцевого генератора IC3 расположена максимально близко к соответствующему входу (FCK) микросхемы IC1, а шина питания снабжена фильтром на элементах L3, C10, C11. В шинах питания других микросхем также установлены отдельные фильтры.

С выходов демультиплексора IC5 через разъём К2 сигналы (а также напряжение питания +5В и общий провод) поступают на блок индикации, который соединяется с платой приёмника 10-жильным кабелем. Для упрощения схемы и уменьшения цепей коммутации используется двухразрядный семисегментный индикатор, поэтому десятичная точка и дробные части для некоторых значений частоты дискретизации входного сигнала опускаются. При возникновении ошибки чтения входных данных (сигнал ERF — активный) на дисплее будут высвечиваться два тире. Благодаря размещению блока индикации на отдельной печатной плате его удобно монтировать в любом подходящем месте позади передней панели устройства.

Информация о тактовой частоте входного сигнала используется не только для индикации, но и для управления частотой среза выходных аналоговых фильтров ЦАП.

Сигнал о наличии в записи предискажений с выхода приёмника подаётся на цифровой фильтр. Индикация этого режима не предусмотрена, так как компакт-диски с такими записями встречаются довольно редко. Но раз уж они бывают, то данный ЦАП имеет возможность обработать любые предискажения, а обработка их в цифровом фильтре позволяет избавиться от необходимости коммутации дополнительных RC-цепей в аналоговом фильтре.

Продолжение следует...

Статья подготовлена по материалам журнала «Электор»,
вольный перевод Главного редактора «РадиоГазеты» .

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1. Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда (СЗР) вес будет равен 2 3 =8, у третьего разряда – 2 2 =4, у второго – 2 1 =2 и у младшего (МЗР) – 2 0 =1. Если вес МЗР I МЗР =1 мА, то I СЗР =8 мА, а максимальный выходной ток преобразователя I вых.макс =15 мА и соответствует коду 1111 2 . Понятно, что коду 1001 2 , например, будет соответствовать I вых =9 мА и т.д. Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 3.

Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется соотношением

При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k -м разряде должен быть меньше, чем

D R / R =2 –k

Из этого условия следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3%, а в 10-м разряде – 0,05% и т.д.

Рассмотренная схема при всей ее простоте обладает целым букетом недостатков. Во-первых, при различных входных кодах ток, потребляемый от источника опорного напряжения (ИОН), будет различным, а это повлияет на величину выходного напряжения ИОН. Во-вторых, значения сопротивлений весовых резисторов могут различаться в тысячи раз, а это делает весьма затруднительной реализацию этих резисторов в полупроводниковых ИМС. Кроме того, сопротивление резисторов старших разрядов в многоразрядных ЦАП может быть соизмеримым с сопротивлением замкнутого ключа, а это приведет к погрешности преобразования. В-третьих, в этой схеме к разомкнутым ключам прикладывается значительное напряжение, что усложняет их построение.

Эти недостатки устранены в схеме ЦАП AD7520 (отечественный аналог 572ПА1), разработанном фирмой Analog Devices в 1973 году, которая в настоящее время является по существу промышленным стандартом (по ней выполнены многие серийные модели ЦАП). Указанная схема представлена на рис. 4. В качестве ключей здесь используются МОП-транзисторы.

Рис. 4. Схема ЦАП с переключателями и матрицей постоянного импеданса

В этой схеме задание весовых коэффициентов ступеней преобразователя осуществляют посредством последовательного деления опорного напряжения с помощью резистивной матрицы постоянного импеданса. Основной элемент такой матрицы представляет собой делитель напряжения (рис. 5), который должен удовлетворять следующему условию: если он нагружен на сопротивление R н, то его входное сопротивление R вх также должно принимать значение R н. Коэффициент ослабления цепи a =U 2 /U 1 при этой нагрузке должен иметь заданное значение. При выполнении этих условий получаем следующие выражения для сопротивлений:

в соответствии с рис.4.

Поскольку в любом положении переключателей S k они соединяют нижние выводы резисторов с общей шиной схемы, источник опорного напряжения нагружен на постоянное входное сопротивление R вх =R . Это гарантирует неизменность опорного напряжения при любом входном коде ЦАП.

Согласно рис. 4, выходные токи схемы определяются соотношениями

(8)
(9)

а входной ток

(10)

Поскольку нижние выводы резисторов 2R матрицы при любом состоянии переключателей S k соединены с общей шиной схемы через низкое сопротивление замкнутых ключей, напряжения на ключах всегда небольшие, в пределах нескольких милливольт. Это упрощает построение ключей и схем управления ими и позволяет использовать опорное напряжение из широкого диапазона, в том числе и различной полярности. Поскольку выходной ток ЦАП зависит от U оп линейно (см. (8)), преобразователи такого типа можно использовать для умножения аналогового сигнала (подавая его на вход опорного напряжения) на цифровой код. Такие ЦАП называют перемножающими (MDAC).

Точность этой схемы снижает то обстоятельство, что для ЦАП, имеющих высокую разрядность, необходимо согласовывать сопротивления R 0 ключей с разрядными токами. Особенно это важно для ключей старших разрядов. Например, в 10-разрядном ЦАП AD7520 ключевые МОП-транзисторы шести старших разрядов сделаны разными по площади и их сопротивление R 0 нарастает согласно двоичному коду (20, 40, 80, … , 640 Ом). Таким способом уравниваются (до 10 мВ) падения напряжения на ключах первых шести разрядов, что обеспечивает монотонность и линейность переходной характеристики ЦАП. 12-разрядный ЦАП 572ПА2 имеет дифференциальную нелинейность до 0,025% (1 МЗР).

ЦАП на МОП ключах имеют относительно низкое быстродействие из-за большой входной емкости МОП-ключей. Тот же 572ПА2 имеет время установления выходного тока при смене входного кода от 000...0 до 111...1, равное 15 мкс. 12-разрядный DAC7611 фирмы Burr-Braun имеет время установления выходного напряжения 10 мкс. В то же время ЦАП на МОП-ключах имеют минимальную мощность потребления. Тот же DAC7611 потребляет всего 2,5 мВт. В последнее время появились модели ЦАП рассмотренного выше типа с более высоким быстродействием. Так 12-разрядный AD7943 имеет время установления тока 0,6 мкс и потребляемую мощность всего 25 мкВт. Малое собственное потребление позволяет запитывать такие микромощные ЦАП прямо от источника опорного напряжения. При этом они могут даже не иметь вывода для подключения ИОН, например, AD5321.

ЦАП на источниках тока

ЦАП на источниках тока обладают более высокой точностью. В отличие от предыдущего варианта, в котором весовые токи формируются резисторами сравнительно небольшого сопротивления и, как следствие, зависят от сопротивления ключей и нагрузки, в данном случае весовые токи обеспечиваются транзисторными источниками тока, имеющими высокое динамическое сопротивление. Упрощенная схема ЦАП на источниках тока приведена на рис. 6.

Рис. 6. Схема ЦАП на источниках тока

Весовые токи формируются с помощью резистивной матрицы. Потенциалы баз транзисторов одинаковы, а чтобы были равны и потенциалы эмиттеров всех транзисторов, площади их эмиттеров делают различными в соответствии с весовыми коэффициентами. Правый резистор матрицы подключен не к общей шине, как на схеме рис. 4, а к двум параллельно включенным одинаковым транзисторам VT 0 и VT н, в результате чего ток через VT 0 равен половине тока через VT 1 . Входное напряжение для резистивной матрицы создается с помощью опорного транзистора VT оп и операционного усилителя ОУ1, выходное напряжение которого устанавливается таким, что коллекторный ток транзистора VT оп принимает значение I оп. Выходной ток для N -разрядного ЦАП.

(11)

Характернымипримереми ЦАП на переключателях тока с биполярными транзисторами в качестве ключей являются 12-разрядный 594ПА1 с временем установления 3,5 мкс и погрешностью линейности не более 0,012% и 12-разрядный AD565, имеющий время установления 0,2 мкс при такой же погрешности линейности. Еще более высоким быстродействием обладает AD668, имеющий время установления 90 нс и ту же погрешность линейности. Из новых разработок можно отметить 14-разрядный AD9764 со временем установления 35 нс и погрешностью линейности не более 0,01%.

В качестве переключателей тока S k часто используются биполярные дифференциальные каскады , в которых транзисторы работают в активном режиме. Это позволяет сократить время установления до единиц наносекунд. Схема переключателя тока на дифференциальных усилителях приведена на рис. 7.

Дифференциальные каскады VT 1 –VT 3 и VT" 1 –VT" 3 образованы из стандартных ЭСЛ вентилей. Ток I k , протекающий через вывод коллектора выходного эмиттерного повторителя является выходным током ячейки. Если на цифровой вход D k подается напряжение высокого уровня, то транзистор VT 3 открывается, а транзистор VT" 3 закрывается. Выходной ток определяется выражением

Точность значительно повышается, если резистор R э заменить источником постоянного тока, как в схеме на рис. 6. Благодаря симметрии схемы существует возможность формирования двух выходных токов – прямого и инверсного. Наиболее быстродействующие модели подобных ЦАП имеют входные ЭСЛ-уровни. Примером может служить 12-ти разрядный МАХ555, имеющий время установления 4 нс до уровня 0,1%. Поскольку выходные сигналы таких ЦАП захватывают радиочастотный диапазон, они имеют выходное сопротивление 50 или 75 ом, которое должно быть согласовано с волновым сопротивлением кабеля, подключаемого к выходу преобразователя.

Формирование выходного сигнала в виде напряжения

Существует несколько способов формирования выходного напряжения для ЦАП с суммированием весовых токов. Два из них показаны на рис. 8.

Рис. 8. Формирование напряжения по токовому выходу ЦАП

На рис. 8а приведена схема с преобразователем тока в напряжение на операционном усилителе (ОУ). Эта схема пригодна для всех ЦАП с токовым выходом. Поскольку пленочные резисторы, определяющие весовые токи ЦАП имеют значительный температурный коэффициент сопротивления, резистор обратной связи R ос следует изготавливать на кристалле ЦАП и в том же технологическом процессе, что обычно и делается. Это позволяет снизить температурную нестабильность преобразователя в 300…400 раз.

Для ЦАП на МОП-ключах с учетом (8) выходное напряжение схемы на рис. 8а.

Обычно сопротивление резистора обратной связи R ос =R . В таком случае

(12)

Большинство моделей ЦАП имеет значительную выходную емкость. Например, у AD7520 с МОП-ключами в зависимости от входного кода С вых составляет величину 30…120 пФ, у AD565А с источниками тока С вых =25 пФ. Эта емкость совместно с выходным сопротивлением ЦАП и резистором R ос создает дополнительный полюс частотной характеристики петли обратной связи ОУ, который может вызвать неустойчивость в виде самовозбуждения. Особенно это опасно для ЦАП с МОП-ключами при нулевом входном коде. При R ос =10 кОм частота второго полюса составит около 100 кГц при 100%-ной глубине обратной связи. В таком случае усилитель, частота единичного усиления которого f т превышает 500 кГц, будет иметь явно недостаточные запасы устойчивости. Для сохранения устойчивости можно включить параллельно резистору R ос конденсатор С к, емкость которого в первом приближении можно взять равной С вых. Для более точного выбора С к необходимо провести полный анализ устойчивости схемы с учетом свойств конкретного ОУ. Эти мероприятия настолько серьезно ухудшают быстродействие схемы, что возникает парадоксальная ситуация: для поддержания высокого быстродействия даже недорогого ЦАП может потребоваться относительно дорогой быстродействующий (с малым временем установления) ОУ.

Ранние модели ЦАП с МОП ключами (AD7520, 572ПА1 и др.) допускают отрицательное напряжение на ключах не свыше 0,7 В, поэтому для защиты ключей между выходами ЦАП следует включать диод Шоттки, как это показано на рис. 8а.

Для цифро-аналогового преобразователя на источниках тока преобразование выходного тока в напряжение может быть произведено с помощью резистора (рис.8б). В этой схеме невозможно самовозбуждение и сохранено быстродействие, однако амплитуда выходного напряжения должна быть небольшой (например, для AD565А в биполярном режиме в пределах ± 1 В). В противном случае транзисторы источников тока могут выйти из линейного режима. Такой режим обеспечивается при низких значениях сопротивления нагрузки: R н » 1 кОм. Для увеличения амплитуды выходного сигнала ЦАП в этой схеме к ее выходу можно подключить неинвертирующий усилитель на ОУ.

Для ЦАП с МОП-ключами, чтобы получить выходной сигнал в виде напряжения, можно использовать инверсное включение резистивной матрицы (рис. 9).

Рис. 9. Инверсное включение ЦАП с МОП-ключами

Для расчета выходного напряжения найдем связь между напряжением U i на ключе S i и узловым напряжением U " i . Воспользуемся принципом суперпозиции. Будем считать равными нулю все напряжения на ключах, кроме рассматриваемого напряжения U i . При R н =2R к каждому узлу подключены справа и слева нагрузки сопротивлением 2R . Воспользовавшись методом двух узлов, получим

Выходное напряжение ЦАП найдем как общее напряжение на крайнем правом узле, вызванное суммарным действием всех U i . При этом напряжения узлов суммируются с весами, соответствующими коэффициентам деления резистивной матрицы R- 2R . Получим

Для определения выходного напряжения при произвольной нагрузке воспользуемся теоремой об эквивалентном генераторе. Из эквивалентной схемы ЦАП на рис. 10 видно, что

Эквивалентное сопротивление генератора R э совпадает со входным сопротивлением матрицы R- 2R , т.е. R э =R . При R н =2R из (14) получим

Недостатками этой схемы являются: большое падение напряжения на ключах, изменяющаяся нагрузка источника опорного напряжения и значительное выходное сопротивление. Вследствие первого недостатка по этой схеме нельзя включать ЦАП типа 572ПА1 или 572ПА2, но можно 572ПА6 и 572ПА7. Из-за второго недостатка источник опорного напряжения должен обладать низким выходным сопротивлением, в противном случае возможна немонотонность характеристики преобразования. Тем не менее, инверсное включение резистивной матрицы довольно широко применяется в ИМС ЦАП с выходом в виде напряжения, например, в 12-ти разрядном МАХ531, включающем также встроенный ОУ в неинвертирующем включении в качестве буфера, или в 16-ти разрядном МАХ542 без встроенного буфера. 12-ти разрядный ЦАП AD7390 построен на инверсной матрице с буферным усилителем на кристалле и потребляет всего 0,3 мВт мощности. Правда его время установления достигает 70 мкс.

Параллельный ЦАП на переключаемых конденсаторах

Основой ЦАП этого типа является матрица конденсаторов, емкости которых соотносятся как целые степени двух. Схема простого варианта такого преобразователя приведена на рис. 11. Емкость k -го конденсатора матрицы определяется соотношением

Равный заряд получает и конденсатор С в обратной связи ОУ. При этом выходное напряжение ОУ составит

Для хранения результата преобразования (постоянного напряжения) в течении сколь-нибудь продолжительного времени к выходу ЦАП этого типа следует подключить устройство выборки-хранения. Хранить выходное напряжение неограниченное время, как это могут делать ЦАП с суммированием весовых токов, снабженные регистром-защелкой, преобразователи на коммутируемых конденсаторах не могут из-за утечки заряда. Поэтому они применяются, в основном, в составе аналого-цифровых преобразователей. Другим недостатком является большая площадь кристалла ИМС, занимаемая подобной схемой.

ЦАП с суммированием напряжений

Схема восьмиразрядного преобразователя с суммированием напряжений, изготавливаемого в виде ИМС, приведена на рис. 8.12. Основу преобразователя составляет цепь из 256 резисторов равного сопротивления, соединенных последовательно. Вывод W через ключи S 0 …S 255 может подключаться к любой точке этой цепи в зависимости от входного числа. Входной двоичный код D преобразуется дешифратором 8х256 в унитарный позиционный код, непосредственно управляющий ключами. Если приложить напряжение U AB между выводами А и В , то напряжение между выводами W и B составит

U WB =U AB D.

Достоинством данной схемы является малая дифференциальная нелинейность и гарантированная монотонность характеристики преобразования. Ее можно использовать в качестве резистора, подстраиваемого цифровым кодом. Выпускается несколько моделей таких ЦАП. Например, микросхема AD8403 содержит четыре восьмиразрядных ЦАП, выполненных по схеме на рис. 8.12, с сопротивлением между выводами А и В 10, 50 либо 100 кОм в зависимости от модификации. При подаче активного уровня на вход “Экономичный режим” происходит размыкание ключа S откл и замыкание ключа S 0 . ИМС имеет вход сброса, которым ЦАП можно установить на середину шкалы. Фирма Dallas Semiconductor выпускает несколько моделей ЦАП (например, сдвоенный DS1867) с суммированием напряжений, у которых входной регистр представляет собой энергонезависимое оперативное запоминающее устройство, что особенно удобно для построения схем с автоматической подстройкой (калибровкой). Недостаток схемы – необходимость изготавливать на кристалле большое количество (2 N) согласованных резисторов. Тем не менее, в настоящее время выпускаются 8-ми, 10-ти и 12-ти разрядные ЦАП данного типа с буферными усилителями на выходе, например, AD5301, AD5311 и AD5321.

Всем привет. Сегодня хочу поговорить о достаточно неплохом USB ЦАПе начального уровня.

Данное устройство должно заинтересовать следующие категории людей:

1) Пользователи ноутбуков и стационарников с вышедшей из строя встроенной аудио картой.

2) Пользователи ноутбуков, производитель которых не полностью добавил поддержку Windows 10.
Это как раз мой случай, подробнее:

Раскрыть пояснение

На работе выдали «новый» б/у ноутбук, в замен моего Lenovo T420 который работал на Windows 7 и находился в очень хорошем состоянии, но не совместимый с Windows 10, на который компания решила перейти полностью, по ряду соображений (официально из-за безопасности, но понятно что тут ещё фактор поддержки и совместимости сыграл роль, не только со стороны Microsoft).

Выдали мне HP Revolve 810, который вроде бы совместим с Windows 10. Всё вроде бы есть, но официального драйвера именно на звуковуху нет! Так как аудио достаточно редкое, фирма IDT:
HDAUDIO\FUNC_01&VEN_111D&DEV_76E0&SUBSYS_103C21B3&REV_1003
(такие чипы ещё любил ставить Intel на свои матерински), дрова найти особо негде.

На форуме HP наткнулся на ссылку на совместимый драйвер от такого же пользователя как и я, при этом он говорит что драйвер кривоват…
Так как драйвер взят непонятно где, да и ещё не ясно насколько хорошо работает, решил не ставить его на рабочий ноут, и пришлось мне довольствоваться стандартным виндовым драйвером.

Как показала практика, пользоваться стандартным, автоматически установленным драйвером на аудио можно, но звук будет похуже, чем мог бы быть с драйвером.
Если у вас настольная плата, то при эксплуатации такого драйвера могут возникунть проблемы с работоспособностью линейного входа, а так же с другими функциями. Кроме того, при работе на «стандартном» драйвере нет эквалайзера, который, в прочем, можно покрутить например при использовании foobar2000.
После Lenovo T420, на тех же наушниках, звук меня не устроил. Да вроде играет, да вроде без искажений, но музыку не очень хочется слушать из-за того что она подаётся как то сухо, без прежнего эмоционального окраса что ли.


3) Как альтернативная аудио карта на портативных устройствах под управлением Android (условно называю аудио картой, так как на сабже нет микрофонного входа, привычного для такой категории устройств). По поводу IOS не могу сказать, возможно там тоже заведётся.

4) Пользователей прочих устройств у которых нет аудио на борту, и на которых имеется совместимая ОС.

Ранее, на данном сайте уже рассматривались похожие устройства, но в таком исполнении я не нашёл, посмотрев среди ранее обозреваемых.

Сразу же отмечу, что есть более доступный аналог этого ЦАПа:
, стоимостью примерно в 2 раза ниже, но и качество изготовления с материалами там похуже… Думал купить её для сравнения, но пока не стал, так как в любом случае буду переделывать выход (а это лишнее время), и пока не наигрался с первым ЦАП-ом.

На Aliexpress, к слову, цапы на PCM2704 раза в 2 дороже, и есть там в основном «большие» варианты, те которые с оптическим выходом и RCA.

Перейдём к обозреваемому ЦАП-у
Плата выполнена очень качественно. Текстолит очень толстый, пайка достаточно аккуратная, флюс отмыт. Выглядит платка весьма симпатично, но лучше, всё же, что бы она была в корпусе. Производитель не по жадничал и поставил танталовые конденсаторы в выходной фильтр. Смотрите сами:

Эксплуатация и впечатления о работе.
Начать работать с ЦАП-ом очень просто. Ручная установка каких либо драйверов не требуется. Под Windows XP/7/10 драйвер подхватывался автоматически.

В отличии от встроенного аудио, ЦАП играет ощутимо громче, при том же уровне громкости. Играет достаточно качественно, немного лучше чем встроенное в мой ноутбук аудио, но разница не особо ощутима, на уровне погрешности.

Со слов коллеги, с ноутбуком Lenovo, которому повезло с наличием realtek (и соответственно полноценных дров под десятку), на его ноутбуке встройка поинтересней данного ЦАПа.

Лично на мой взгляд, сабжу не хватает «мясца» (почерпнул эту достаточно подходящую аллегорию на каком то «аудио форуме») и детализации, по крайней мере при использовании наушников с импедансом 32Ом.

Наушнички у меня так себе, но и не самый шлак:


Это Pioneer SE-MJ21.

Специально для тестов, с большой скидкой были приобретены дополнительные наушники, адаптированные для портативной техники, в том числе заточенные для техники от производителя яблочной продукции:

В этих наушниках, видимо из-за высокой чувствительности, ЦАП орёт ещё сильнее, звук более приятен и интересен если слушать звук на той же громкости что и в предыдущих наушниках, но не особо сильно.

Видимо сказывается низкая мощность встроенного в PCM2704C усилителя и достаточно большие искажения при работе на 32Ом нагрузку. Сам ЦАП по аудиофильским меркам так себе, что подтверждается в параметрах из даташита.
Более «крутого» ЦАПа у меня сейчас нет, что бы сравнить их в лоб.

Я не отношу себя к аудиофилам, но всё же, зачастую их слова не лишены смысла, даже если они расходятся с данными из документации, но такое судя по всему редкое событие.
Как я уже отметил, сабж построен на PCM2704C , так же есть более старая версия чипа PCM2704, без приставки «C», который TI не рекомендует для новых проектов. Насколько я понял при достаточно поверхностном изучении даташита, особых отличий между чипами нет, распиновка и характеристики одинаковые.

Работа под Android:
Под Android ЦАП работает, определяется телефоном в течении секунд 5 и дальше понеслась.
Я провел лишь беглое тестирование, опробовав пару плееров. Все они, звук через ЦАП воспроизводят, но не могут управлять громкостью, поэтому громкость на максимуме.
Нужно покопаться ещё в настройках, но сделать это я сейчас не могу, так как тестировал бегло, на чужих смартфонах, из-за того что мой красный рис «кончился» около двух недель назад, а почта России морозит посылку в Москве уже неделю, сил моих нет больше тянуть с обзором)). Позже думаю дополню обзор или выпущу отдельную заметку под Android, с примечанием о регулировке звука.

Под Linux не проверял работоспособность, но работать должно. Если кто то из муськовчан сильно заинтересован, то могу проверить.

Дело было вечером, делать было нечего… Кастомизация.

Решил городить простенький усилитель (тестовый макет, не более того) на доступных сдвоенных операционных усилителях, предназначенных для аудио, вдруг он «раскачает» выхлоп, подумал я.
Так получилось, что у меня таких микросхем было две, и обе разные. Одна NE5532P купленная в локальном чип и дипе за 15р, и OPA2134 купленная пару лет назад на taobao, походу настоящая).
Когда собирал усилитель, собрал сначала один канал, и несколько дней гонял его с разными ОУ, оперативно передёргивая их из заранее предусмотренной для этих целей панельки, прямо в ходе прослушивания. Звучание было разное, но об этом в другом разделе.

В «законченном проекте» (думаю всё только начинается, если мне не будет лень) использую две NE5532AP, из чип и дипа, они по 21р).

Получилось вот такое «творение», предназначенное для обкатки и тестов:

Здесь много длинных проводов, но это лишь в менее значимых частях схемы, вход сделан максимально коротким (кроме электролита) и в экране.

Один из каналов:

Здесь питание импульсное, от powerbank-а, одна из первых реализаций. Подробнее о питании ниже.

Схемотехника усилителя.
Так имеющийся миниджек (культурно сделанный) затерялся где то дома, было принято решение подпаяться к соответствующим ногам чипа для получения входного сигнала на усилитель.
Согласно документации, ноги 14-15 отвечают за вывод сигнала с ЦАП. Подпаивался к этим ногам с помощью относительно тонкого 50Ом антенного кабеля: . При этом, к самой ноге паял тонкий, медный лакированный провод, толщиной примерно 0.2мм (микрометра нету у меня, поэтому не могу точно сказать, да и не столь важно это) и уже им подпаивался к жиле кабеля. Экран кабеля паял на GND платы, который обнаружился между двумя керамическими конденсаторами, идентичными для каждого их каналов.

Сам усилитель основан на следующей, незамысловатой схеме включения сдвоенного ОУ в качестве усилителя для наушников, рассмотренного компанией BB (TI):


Схема взята от сюда:

На вход данной схемы была добавлена последовательная цепочка из резистора 4.7К и электролитического конденсатора 10мкФ. Конденсатор подключается плюсом к входному сигналу.
Так же, был добавлен резистор между не инвертирующим входом первого ОУ и землёй.

Вот итоговая схема:

Как паял и как настраивал.

Пару лет назад я паял предусилитель для динамического микрофона, и извлёк из этого кое какой опыт:
Во первых, если делается тестовый макет, в том числе с навесным монтажом, проводные соединения должны быть как можно короче и по возможности минимизированы. Расстояние между компонентами так же должно быть минимальным.
Слаботочные входные цепи должны быть экранированы и не должны пересекаться с питанием.
Всё это поможет снизить входной, собственный шум усилителя.

Первоначально, напаял переменных резисторов для тестирования входного фильтра и для подстройки коэффициента усиления, несмотря на то что обычно его задают заранее, а мощность уже регулируют переменным резистором, находящимся на входе, перед фильтром.
В конечном варианте макета, оставил лишь по переменнику 4.7К соединённому последовательно с резистором 3.3К, для каждого канала, в цепи задающий коэффициент усиления.
Кроме этого, пришлось повозиться с входным фильтром, в поисках оптимальных параметров. Здесь я подглядел в схему этого агрегата:
Нашёл в своих запасах около десятка разных конденсаторов. Это были бумажные, электролиты, плёночные и другие:

Конденсаторы

В итоге, понравилось звучание электролита 63V 10мкФ, перед которым был поставлен резистор 4.7К.

О питании

В данной схеме ОУ необходимо запитывать от двух полярного источника питания.
Необходим был преобразователь из одно полярного напряжения в двух полярное.
С Ebay, сейчас где то идёт специализированная микросхема для этих целей, но взята она была просто сравнить разницу с относительно нормальным двухполярным питанием (которое я планировал собрать сам), так как на данном сайте её успешно оттестировал Kirich и выявил что она «шумновата», что не есть гуд для аудио. Как приедет проверю и отпишусь.

В итоге, за основу была взята данная схема:

Будучи «счастливым» обладателем интегрированной звуковой подсистемы, я все же мечтал о хорошей звуковой карте, и даже подумать не мог, что ее можно сделать своими руками в домашних условиях. Однажды, бороздя просторы Всемирной сети, наткнулся на описание звуковой карты с USB интерфейсом на микросхеме РСМ2702 фирмы Burr-Brown и, просмотрев прайсы фирм, торгующих радиодеталями, понял, что это пока не для нас - о ней никто ничего не знал. Позже мой компьютер был собран в небольшом корпусе microATX, в котором не хватало места даже для старенькой Creative Audigy2 ZS. Пришлось искать что-то небольшое и желательно внешнее с интерфейсом USB. И тут снова наткнулся на чип РСМ2702, который уже активно использовали и хвалили за качество воспроизведения музыки - при правильной схемотехнике звук был куда приятней, чем у той же Audigy2 ZS. Снова поиск по прайсам, и о чудо, искомая микросхема есть в наличии по цене около 18 «вражеских денег». В итоге была заказано парочка чипов для экспериментов, так сказать, послушать, что там наваяли буржуйские «ЦАПостроители».

Итак, что же за зверь этот контроллер РСМ2702, от легендарной фирмы Burr-Brown, который покорила сердца аудиофилов во всем мире своими топовыми решениями? Интересно, на что способно бюджетное решение?

По данным технической документации на микросхему (pcm2702.pdf) мы имеем цифро-аналоговый преобразователь (digital-to-analog converter - DAC) с интерфейсом USB со следующими характеристиками:

  • Разрядность 16 бит;
  • Частота дискретизации 32 кГц, 44,1 кГц и 48 кГц;
  • Динамический диапазон 100 дБ;
  • Отношение сигнал/шум 105 дБ;
  • Уровень нелинейных искажений 0,002%;
  • Интерфейс USB1.1;
  • Цифровой фильтр с 8-ми кратной передискретизацией;
  • Работает со стандартным драйвером USB audio device.
Характеристики оказались весьма неплохими, особенно порадовала поддержка частоты дискретизации 44,1 кГц, которая является стандартной для большинства аудио-форматов, в то время как Creative Audigy2 ZS были лишены возможности работать на этой частоте. Процессор звуковой платы Creative проводил передискретизацию потоков с частотой 44,1 кГц в поток с частотой 48 кГц, причем, не всегда по оптимальному алгоритму, что выражалось в потере качества воспроизведения музыки. Большой плюс РСМ2702 заключается в том, что для восстановления исходного состояния сигнала после цифровой обработки используется внешний фильтр низких частот - LPF (low-pass filter- LPF), от которого сильно зависит качество звука. У большинства бюджетных решений LPF встроенный, и мы получаем на выходе уже восстановленный аудио-сигнал, при этом нет возможности хоть как-то повлиять на данный процесс.

Теперь про само устройство. Для начала был собран простенький вариант по рекомендуемой производителем схеме с небольшими изменениями в питании. Получилась маленькая «звуковуха» с питанием от USB.


Но такое устройство не являлось законченным и требовало внешний усилитель, да и наушники нормально раскачать не могло. Позже была заменена материнская плата на другую, с нормальным HAD-кодеком и хорошей разводкой платы. Аудиотракт был лишен посторонних шумов и шорохов, да и качество выходного сигнала было не хуже чем у РСМ2702. И, наверное, этих строк не было, ели бы мне на глаза не попался такой вот ящичек:






Это система пассивного охлаждения для HDD, но для меня, в первую очередь, это шикарный корпус для радиоаппаратуры. Я сразу понял, что в нем будет что-то собрано, например, звуковая карта с усилителем, благо с охлаждением проблем не должно быть. Много думал над схемотехникой девайса. С одной стороны хотелось высокого качества, а с другой - не хотелось платить больше чем стоят готовые звуковые платы от Creative. Основной вопрос возник по LPF и усилителю для наушников, ведь высококачественные комплектующие для этих целей могут стоить столько же, как сама РСМ2702, а то и больше. Например, цена на высококачественные операционные усилители для LPF - ОРА2132 и OPA627, стоят порядка 10 и 35 долларов соответственно. Микросхемы усилителя для наушников - AD815 или TPA6120, я вовсе не нашел в прайсах, причем, цены на них тоже не маленькие.

Но худа без добра не бывает и я нашел в Сети схему простого и качественного LPF на транзисторах, автор которой утверждал о приличном звучании, даже не хуже дорогих операционных усилителей. Решил попробовать. В качестве усилителя для наушников поставил микросхему LM1876 - младшую двухканальную «сестру» легендарной LM3886 с таким же звучанием но меньшей мощностью. Данная микросхема позволяет, увеличив коэффициент усиления, подключать колонки.

Получилась вот такая схема - USB-DAC_PCM2702_Sch.pdf , чертеж печатной платы - USB-DAC_PCM2702_Pcb.pdf в зеркальном отображении для переноса изображения лазерно-утюжным методом на медную фольгу, так называемый ЛУТ (подробней можно почитать в Интернете), чертеж расположения элементов и перемычек на плате, а также схема подключения регулятора громкости - USB-DAC_PCM2702.pdf .

В собранном виде плата выглядит так:



Немного расскажу, как это все работает, если вдруг найдутся желающие собрать подобный агрегат. Схема включения PCM2702 стандартная - LPF представляет собой фильтр Саллена-Кея, ФНЧ второго порядка с единичным усилением, поскольку активный элемент работает как повторитель, то без проблем можно использовать эмиттерный или истоковый повторитель. Тут уже есть поле для экспериментов. Можно подобрать тип транзисторов, который больше нравится по звуку - я, тестируя из того что было в наличии, остановился на КТ3102Е в металлическом корпусе (VT3, VT4 - смотрите схему USB-DAC_PCM2702_Sch). Элементы фильтра больше всего влияют на звук, особенно конденсаторы С25, С26, С31, С32. Знатоки этого дела рекомендуют ставить пленочные конденсаторы WIMA FKP2, фольговый полистирол FSC или советские ПМ. Но в наличии не нашлось ничего нормального и пришлось ставить то, что было, а уже потом я поменял на лучшее. На плате предусмотрены контактные площадки, как под выводные, так и SMD конденсаторы. Резисторы R9, R10, R11, R12 нужны попарно идентичные, для чего берем резисторы с точностью 1% или подбираем пары с помощью мультиметра. Я подбирал из нескольких десятков резисторов с точностью 5%, так как не было времени ждать, пока привезут с точностью 1%. Номиналы резисторов и конденсаторов можно подбирать по звучанию, как больше вам нравится, но единственное условие - пара должна быть одинаковой, чтобы каждый канал не пел по-своему.

В схеме предусмотрено отключение аналогового питания PCM2702 и выхода фильтра от разъемов Х5, Х6 если не подключен USB кабель к разъему Х1. Это сделано для того, чтобы низкое выходное сопротивление фильтра не мешало сигналу подаваемому на эти разъемы при использовании устройства как усилителя для наушников. При подключении аналоговое питание ЦАП подается через транзистор VT2, которым управляет транзистор VT1, если есть напряжение на разъеме USB, то оба транзистора открыты. Выходы фильтров подключаются к разъемам на задней панели через реле К1, которое тоже управляется питанием с USB. Реле я использовал V23079-A1001-B301 фирмы AXICOM. Если нет подобного реле, то вместо него можно поставить обычный переключатель с двумя контактными группами. Вместо транзистора VT2 тоже можно поставить переключатель, а все элементы, отвечающие за коммутацию питания, впаивать не потребуется, только желательно через тот же переключатель коммутировать и само питание USB.

Питается усилитель и аналоговая часть от внешнего источника питания напряжением 12-15 В и 0,5 А переменного тока, подключаемого через разъем Х2 на задней панели.


Сам источник питания был сделан с обычного стабилизированного БП на 12 В 0,5 А путем выбрасывания всего лишнего.


В усилителе также нужно подбирать попарно резисторы R15-R18, которыми задается коэффициент усиления (левый канал Кул = R17/R15, Куп = R18/R16). Если не планируется использование наушников то можно подключать динамики, тогда нужно уменьшить сопротивление резисторов R15, R16 до 4,7-10 кОм, можно еще немного увеличить сопротивление R17, R18. Таким образом, можно будет получить номинальную выходную мощность около 2 х 5 Вт. Если запитать микросхему D6 напряжением +/- 20...25 В, которое берется сразу после выпрямителя с конденсаторов С6, С7 можно получить максимальную выходную мощность 2 х 18 Вт, но для этого нужно будет поставить диоды VD2, VD3 на ток не меньше 3А, заменить предохранитель F2 на ток не меньше 3А, увеличить емкость конденсатов С6, С7 в два раза и использовать трансформатор в блоке питания большей мощности, примерно 16 В 4 А переменного тока.

Все резисторы SMD, резисторы R20, R22 типоразмером 1206, резисторы R13, R14 типоразмером 2010 вместо них можно установить перемычки, все остальные резисторы типоразмером 0805. Все керамические конденсаторы SMD типоразмером 0805, все электролитические конденсаторы с максимальной рабочей температурой 105 °С и малым внутренним сопротивлением, с рабочим напряжением 16 В, конденсаторы С6, С7 с максимальным рабочим напряжением 25-35 В. Большинство разъемов выпаяны с старой аппаратуры точной маркировки сказать не могу, ориентируйтесь по внешнему виду. Резистор регулятора громкости подключается двухжильным экранированным проводом, два канала сигнала и земля по экрану, резистор неизвестного китайского происхождения сопротивлением 20 кОм группы В (с экспоненциальной зависимостью сопротивления от угла поворота ручки).

Еще хочу немного рассказать, как паять микросхемы в таком маленьком корпусе. Некоторые ошибочно считают, что такие микросхемы нужно паять паяльниками маленькой мощности и тонким жалом. Очень весело наблюдать, когда люди затачивают жало, как шило и пытаются им паять каждую ножку в отдельности. На самом деле все легко и просто. Для начала устанавливаем микросхему в нужном положении, придерживаем рукой или фиксируем клеем, припаиваем один их крайних выводов, далее центруем, если нужно, и припаиваем противоположный вывод. Если спаяется несколько выводов вместе, то это не страшно. Паяльник берется мощностью 30-50 Вт с луженым, свеже-заточенным жалом под углом около 45°, и не жалеем флюса или канифоли. Флюс желательно не активный, иначе придется очень тщательно отмывать плату пытаясь вымыть его из-под микросхемы. Маленькой каплей припоя прогреваем все ноги, начиная с одного края и постепенно, по мере прогрева, сдвигаем паяльник в сторону не запаянных выводов, сгоняя на них лишний припой, при этом плату можно держать под углом, чтобы припой под действием силы тяжести сам стекал вниз. Если припоя не хватит - взять еще капельку, если много, то с помощью тряпки снимаем весь припой, что есть на жале паяльника, и не жалея флюса снимаем лишнее с выводов микросхемы. Таким образом, если плата нормально протравленная, хорошо зачищенная и обезжирена, то пайка проходит в течении 1-3 минуты и получается чистой, красивой и равномерной, что видно на моей плате. Но для большей уверенности рекомендую потренироваться на горелых платах от разной компьютерной техники с микросхемами, имеющими примерно такой же шаг выводов.

Рекомендую сначала не впаивать микросхемы D2 и D6 и элементы, которые могут мешать при их установке. В первую очередь необходимо спаять узлы, отвечающие за питание, прозвонить цепи питания на предмет короткого замыкания, подключить к порту USB и подать переменное напряжение 14 В с блока питания на Х2. На будущих выходах микросхем стабилизаторов должно быть следующие напряжения:

  • D1: +3,3 В;
  • D3: +12 В;
  • D4: -12 В;
  • D5: +5 В.
Далее необходимо проверить функционирование узла отключения аналогового питания ЦАП на транзисторах VT1, VT2. Если все нормально тогда впаиваем микросхемы D2 и D6 проверяем на наличие связей там, где нужно и отсутствие там, где не нужно и все, можно пробовать послушать что вышло.

При первом подключении РСМ2702 к компьютеру, система находит новое устройство - Динамики USB Burr-Brown Japan PCM2702.


После автоматической установки драйвера в диспетчере устройств, появится новое устройство - Динамики USB. Это значит, что все работает, так как нужно и можно включать музыку, видео или даже запускать игры.


Система автоматически передает звук на микросхему РСМ2702 при ее подключении к компьютеру и возвращает в исходное состояние при отключении платы, для возобновления воспроизведения нужно просто перезапустить нужную программу. Громкость регулируется стандартным регулятором громкости ОС Windows. Я проверял работоспособность платы только под системой Windows ХР SP2.

Немного о сборке всего устройства в корпус. Самое сложное это установка переменного резистора регулятора громкости. Передняя панель крепиться к шасси за выступ, который проходит вдоль тыльной стороны панели и имеет довольно серьезную толщину. Этот выступ нужно срезать ножовкой по металлу или фрезерным станком в том месте, где будет крепиться регулятор громкости, но при этом нужно быть очень осторожным, так как можно поцарапать покрытие алюминия из-за чего панель потеряет свою привлекательность. Затем сверлим отверстие для крепления резистора, место для которого прикидываем по положению ручки, которая будет надеваться на этот самый резистор. С лицевой стороны немного убираем ребра возле отверстия, чтобы гайка достала резьбы на основании резистора. Есть еще одна проблемка - центр панели не совпадает с центром внутренней камеры шасси, и резистор регулятора громкости упирается в корпус. Пришлось поднять панель на 2-3 мм, для чего срезал дремелем угол выступа для крепления.

Не буду подробно описывать все действия с панелью и шасси. Те, кто может сделать сам такого рода устройство, всё поймёт по фотографиям. Где нужно были посверлены отверстия и нарезана резьба, под панель при установке было подложено по 2 шайбы возле каждого винта, чтобы поднять ее на 2 мм. В шасси также посверлены отверстия и нарезана резьба для крепления платы. Микросхемы D3, D4 и D6 прижаты к шасси винтами М2.5, при этом D4 и D6 нужно изолировать от панели с помощью пластины слюды или другого теплопроводящего диэлектрика или использовать микросхемы с изолированным корпусом, как D6 в моём случае. Задняя панель сделана из пластмассовой заглушки от системного блока. Все это подробней можно рассмотреть на фото.