» » Уровень радиации на марсе в рентгенах. На марсе сравнительно безопасный уровень радиации. Радиация на Марсе не помешает колонизации красной планеты

Уровень радиации на марсе в рентгенах. На марсе сравнительно безопасный уровень радиации. Радиация на Марсе не помешает колонизации красной планеты

По данным от марсохода Curiosity, уровень радиации на Марсе почти такой же, как и на низкой околоземной орбите, где находится Международная космическая станция. Но визит на Красную планету не становится от этого безопасным, так как лететь придется достаточно долго.

По сравнению с Землей, у Марса отсутствует магнитосфера, которая защищает планету от галактического и солнечного излучения. Впрочем, есть тонкая атмосфера, которая обеспечивает небольшую защиту. По словам одного из операторов Curiosity, это открытие стало первым в истории измерением радиационной обстановки на планете, отличной от Земли. Астронавты смогут жить в подобной среде.

От метеорологической станции ровера поступили данные о так называемом тепловом приливе. Атмосфера начинает нагреваться Солнцем, расширяясь и снижая давление. А на другой стороне в это время холодно, там атмосфера начинает опускаться и сжиматься.

Из-за вращения Марса, выпуклость с нагретым воздухом перемещается вместе со светлой стороной с востока на запад. Curiosity зафиксировал подобный эффект, следя за изменением атмосферного давления в течение суток. Также были отмечены ежедневные провалы в уровне заряженных частиц, совпадающие с повышением давления. Получается, что марсианская атмосфера все же обеспечивает защиту.

В настоящий момент ученые не могут дать оценку суточной дозе облучения на Красной планете. Однако понятно, что она будет несколько ниже уровня, зафиксированного космическим кораблем, который перевозил Curiosity. Именно это и становится главной проблемой: за три года перелета космонавты облучатся в семь раз сильнее, чем за это же время на МКС.

Совокупное облучение повышает риск возникновения различных раковых заболеваний, именно поэтому космическими агентствами устанавливаются лимиты на сроки пребывания в космосе. Необходимо получить точную величину марсианской дозы, что как следует защитить космонавтов во время перелета к Красной планете.

Ко всему этому, еще случаются солнечные вспышки, и Curiosity необходимо выяснить, насколько защищен от них Марс.

Естественно, лучший вариант – это подземная база или колония, в которой на поверхность выходят только роботы. Но все же стоит рассмотреть варианты, позволяющие выходить на поверхность и космонавту.

«За последние 200 дней пребывания на Марсе мы узнали о воздействии радиации. Конечно, космическое пространство - опасное место, и излучение является одной из многих причин. Предполагалось, что как только наши астронавты благополучно приземляться на поверхность Марса, планета обеспечит надежную защиту от разрушительного действия радиации. Но оказалось всё не так - радиация влияла не только на человека, но и на автоматические аппараты», - было опубликовано в журнале «Наука».

«На Земле от радиации мы защищены магнитосферой и относительно плотной атмосферой. Но радиация на Марсе - это неоспоримый факт», - сказал Дон Хеслер, автор статьи «Радиационная обстановка поверхности Марса измеряется в Марсианской научной лаборатории».

На Земле радиационное излучение связывают с последствиями катастроф, таких как Чернобыль и Фукусима. Иногда мы беспокоимся, что компьютерная томография, рентген и трансконтинентальные рейсы могут быть причиной облучения. Самым опасным источником излучения, по данным Общества по физическим основам радиационной безопасности, является радон.

Марсоход «Curiosity», находясь в 180-дневном путешествии, позволил вычислить среднюю дозу облучения. Это примерно 300 мЗв, что эквивалентно 24 компьютерным томографиям. Чтобы добраться до Марса, астронавт будет подвергаться 15-кратному годовому облучению, нежели работник атомной станции.

«Изменчивость в уровнях радиации была намного больше, чем ожидалось, - сказал Хеслер. - Существуют также сезонные колебания излучения».

Соавтор исследования Дженнифер Эйгенборд из Института космических исследований утверждает, что потоки излучения имеют решающее значение при определении возможности жизни на Красной планете. Самые мощные частицы в воздухе проникают в марсианский грунт. Воздействуя на поверхность, галактические космические лучи и сильные солнечные энергетические частицы производят гамма-лучи и нейтроны, способные разорвать молекулярные связи в почве. Возможно, этот процесс уничтожил все следы жизни, расположенные близко к поверхности. Новое исследование предполагает, что найти органические молекулы можно, нужно лишь копать гораздо глубже.

«Если мы найдем органику на Марсе, то это нам поможет направить наше исследование в новое русло», - сказала Эйгенборд.

«Зная уровень радиации, мы сможем конструировать различные системы на поверхности, чтобы защитить наших астронавтов от вредного воздействия», - сказал Хеслер.

Чтобы выжить в пути и на планете, необходимо знать космическую погоду. Прогнозирование космической погоды является относительно новой областью, но имеет решающее значение для всех космических миссий.

Прогноз космической погоды включает прогнозирование солнечных вспышек, геомагнитных бурь и выбросов корональной массы, исходящих от Солнца.

«С помощью детектора оценки излучения (RAD) мы продолжаем получать сведения об излучении поверхности, типе частиц и относительных частотах. В настоящее время это единственный способ оценки излучений на Марсе. Данная система поможет более точно разработать костюмы астронавтов, наилучшее место пребывания на планете, запланировать деятельность вне космического корабля. Благодаря измерениям RAD мы можем начать писать «Руководство по выживанию на Марсе», - заявил Хеслер.

Радиация
Самой серьезной проблемой на Марсе является отсутствие магнитного поля, защищающего от солнечной радиации. Магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разреженной атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения.
Радиационный фон на орбите Марса в 2,2 раза превышает радиационный фон на Международной космической станции. Средняя доза составила примерно 220 миллирадов в день. Объем облучения, полученного в результате пребывания в таком фоне на протяжении трех лет, приближается к установленным пределам безопасности для космонавтов.

Невесомость
На Марсе гравитация (притяжение) составляет всего 38% от земной (0,38 g). Степень влияния гравитации на здоровье людей при ее изменении от невесомости до 1 g не изучена, однако ничего хорошего ученые от нее не ждут. На земной орбите предполагается провести эксперимент на мышах с целью исследования влияния марсианской силы притяжения на жизненный цикл млекопитающих, тогда вопрос будет лучше прояснен.

Метеоритная опасность
Из-за своей разреженной атмосферы Марс гораздо в большей степени, чем Земля, подвержен метеоритной угрозе. В связи с этим гости Красной планеты рискуют попасть под метеоритный дождь, по сравнению с которым инцидент в Челябинске покажется детским лепетом. Поэтому и становится особенно актуальной проблема защиты строительной техники в том числе. В том числе придется решить проблему защиты строительных вышек тур http://www.versona.org/ и другого оборудования как на этапе создания поселения, так и позже, когда начнет развиваться сфера услуг, в частности предоставление технки в аренду.


Вредная пыль

На Марсе здоровью космонавтов будут угрожать гораздо более серьезные опасности, чем обычно. Например, простая пыль на Марсе намного опаснее лунной. Ученые подозревают, что эта пыль содержит в себе очень неприятные компоненты - мышьяк и шестивалентный хром, способный при контакте вызывать серьезные ожоги кожи и глаз.

Плохая погода
Скорость ветров, которые дуют над планетой на разных высотах, пока до конца не известна. Пыльные бури скрывают от глаз землян почти всю планету, и длятся они по три месяца.

Психологические моменты
Длительность перелета на и дальнейшее пребывание в замкнутом пространстве могут стать серьезным препятствием для самых сильных и здоровых любителей Марса. Даже при самом оптимальном сценарии один только путь к Марсу будет представлять собой изнурительное пятимесячное странствие.

Марсоход Curiosity проводит свои первые измерения радиации на поверхности другой планеты для того, чтобы определить, могут ли будущие исследователи жить на Марсе - так как марсоход пересекает ландшафт Красной Планеты. Curiosity смотрит назад на свои следы и холмы Mount Sharp и разрушенную кромку кратера Гейла на дальнем горизонте на 24 марсианский день миссии (30 августа 2012). Эта панорама представлена в новом документальном фильме PBS NOVA "Ultimate Mars Challenge" , который был представлен публике 14 ноября 2012. RAD расположен на палубе марсохода на этой цветной сшитой вместе мозаике из фотографий Navcam командой обработки фотографий из Ken Kremer и Marco Di Lorenzo. Предоставлено: NASA / JPL-Caltech / Ken Kremer / Marco Di Lorenzo.

Металлические роботы, построенные изобретательными людьми, могут выживать на Марсе. Но что же о будущих астронавтах людях?

Мужественный марсоход НАСА Mars Exploration Rover Opportunity процветал почти десятилетие, пересекая равнины Meridiani Planum, несмотря на продолжительную бомбардировку стерилизующей космической и солнечной радиацией от заряженных частиц благодаря его внутренностям, защищенным от радиации.

Как о людях? Какая судьба ожидает их на в смелой и вероятно долгой экспедиции продолжительностью в год в бесконечно экстремальной и решительно суровой окружающей среде на поверхности Красной Планеты, пропитанной радиацией - если кто-нибудь когда-нибудь доберется сюда с Земли? Сколько защиты необходимо людям?

Ответ на эти вопросы - один из ключевых квестов для марсохода Curiosity размером с внедорожник - прошло более 100 дней его 2-х летней главной миссии.

Предварительные данные выглядят многообещающими.

Curiosity пережил 8-ми месячное межпланетное путешествие и беспрецедентный маневр спуска через атмосферу на реактивном небесном кране для безопасного касания земли внутри кратера Гейла около возвышающихся слоистых холмов Mount Sharp высотой 5 км 6 августа 2012.

Теперь у есть задание оценить, предлагал ли когда-нибудь и пригодную для обитания микробных форм жизни среду - в прошлом или будущем. Характеристика естественно встречающихся уровней радиации, остающихся от галактического космического излучения и , будет адресована к вопросу как о микробах, так и об астронавтах. может разрушить органические молекулы около поверхности.

Исследователи используют инструмент Curiosity современного технического уровня Radiation Assessment Detector (RAD), чтобы отслеживать высоко энергетическую радиацию на ежедневной основе и помочь определить потенциал рисков для здоровья для реальной жизни, представленный для будущих исследователей-людей на марсианской поверхности.

"Атмосфера обеспечивает уровень защиты, и радиация от таких заряженных частиц меньше, когда атмосфера тоньше", сказал главный исследователь RAD Don Hassler из Юго-Западного Исследовательского Института в Боулдере, Коло. Смотрите графики ниже.

"Абсолютно, астронавты могут жить в этой среде. Она не сильно отличается от той, что астронавты могут испытывать на Международной Космической Станции. Реальный вопрос в том, что если сложить общий вклад в общую дозу астронавта на Марсе, миссия может иметь ограничения для вас, поскольку вы аккумулируете эти числа. Со временем вы достигните тех чисел", объяснил Hassler.

Первоначальные данные RAD первых двух месяцев на поверхности были продемонстрированы на медиа брифинге для репортеров в четверг 15 ноября 2012 и показывают, что радиация несколько ниже на поверхности Марса по сравнению с космической средой из-за защиты марсианской атмосферы.

Долгосрочные изменения радиации в кратере Гейла. График показывает изменение дозы радиации, измеренной Radiation Assessment Detector на марсоходе NASA Curiosity в течение 50 марсианских дней. (На Земле 10 марсианский день был 15 сентября и 60 день - 6 октября 2012). Мощность дозы (как от заряженных частиц, так и нейтральных частиц) была измерена, используя пластмассовый сцинтиллятор, и она показана красным. Предоставлено: NASA/JPL-Caltech/ SwRI.

RAD не обнаружил каких-либо больших солнечных вспышек с поверхности. "Это будет очень важно", сказал Hassler.

"Если бы там была массивная солнечная вспышка, она могла иметь острое воздействие, которое могло бы вызвать рвоту и потенциально подвергнуть миссию опасности с астронавтом в скафандре".

"В целом, атмосфера Марса уменьшает дозу радиации по сравнению с той, что мы видим в течение круиза к Марсу в два раза".

RAD работал и уже провел измерения радиации в течение межпланетного полета космического корабля по сравнению с новыми данными, теперь собранными на дне кратера Гейла.

Марсианское атмосферное давление немного меньше 1% от Земного. Оно чуть-чуть меняется в отношении атмосферных циклов в зависимости от температуры и цикла замерзания-таяния полярных ледяных шапок и результирующих ежедневных тепловых приливов.

"Мы видим ежедневное изменение дозы радиации, измеренной на поверхности, которая обратно пропорциональна давлению атмосферы. Атмосфера Марса действует как щит для радиации. Когда атмосфера становится толще, это обеспечивает больше защиты. Поэтому мы видим падения в дозе радиации на 3-5% каждый день", сказал Hassler.


Автопортрет Curiosity с Mount Sharp на песчаной дюне Rocknest в кратере Гейла. Curiosity использовал камеру Mars Hand Lens Imager (MAHLI) на роботизированной руке, чтобы отобразить себя и свое целевое место назначения Mount Sharp на заднем плане. Горы на фоне слева - это северная стена кратера Гейла. Эта цветная панорамная мозаика была собрана из необработанных фотографий, снятых на 85 марсианский день миссии (1 ноября 2012). Предоставлено: NASA/JPL-Caltech/MSSS/ /Marco Di Lorenzo.

Существуют также сезонные изменения в уровнях радиации, поскольку Марс движется в пространстве.

Команда RAD все еще обрабатывает данные о радиации.

"Есть калибровки и характеристики, которые мы завершаем, чтобы получить эти числа точными. Мы работаем над этим. И мы надеемся опубликовать их на встрече Американского Геофизического Союза в декабре".


Ежедневные циклы радиации и давления в кратере Гейла. Этот график показывает ежедневные изменения в марсианской радиации и атмосферном давлении, измеренные марсоходом Curiosity. Когда давление растет, общая доза радиации уменьшается. Когда атмосферное давление больше, оно обеспечивает лучший барьер с более эффективной защитой от радиации извне. В каждом максимуме давления, уровень радиации падает на 3-5%. Уровень радиации поднимается в конце графика из-за долгосрочной тенденции, которую ученые все еще изучают. Предоставлено: NASA/JPL-Caltech/SwRI.

Радиация - это фактор ограничения обитаемости жизни. RAD - это первый научный инструмент для прямого измерения радиации на поверхности другой планеты.

"Curiosity обнаруживает, что радиационная среда на Марсе чувствительна к марсианской погоде и климату", сделал вывод.

В отличие от Земли, Марс потерял свое магнитное поле около 3.5 миллиардов лет назад - и поэтому большую часть защитной способности от вредных уровней радиации энергетических частиц из космоса.

Гораздо больше данных нужно будет собрать RAD прежде чем какой-либо заключительный вывод по , и как долго и какой тип среды обитания, может быть получен.

Риск радиационного облучения на Марсе для людей не так велик, как считалось раньше, новые результаты, полученные марсоходом Curiosity (Кьюриосити), говорят о том, что теперь это не является препятствием для долговременных пилотируемых миссий к Красной Планете.

В результате миссии, которая будет состоять из 180 дней путешествия в один конец (к Красной Планете или обратно к Земле) и 500 дней, проведенных собственно на Марсе, человек получит суммарную дозу облучения, равную 1.01 зиверта, - таков результат измерений, проведенных детектором излучений ровера Radiation Assessment Detector (RAD).

Европейское Космическое Агентство ограничило допустимую дозу облучения, которую получают космонавты за все время своей работы, 1 зивертом – при этом риск возникновения злокачественных опухолей возрастает на 5%.

«Безусловно, это приемлемое число», - заявляет руководитель отдела RAD Дон Хасслер (Don Hassler) из Юго-Западного Научно-Исследовательского Института в Боулдере, и ведущий автор исследования, результаты которого были опубликованы 9 декабря в журнале Science.

Доза облучения, полученного на Марсе, в 1 зиверт, превышает существующие стандарты NASA, которые ограничивают для астронавтов возрастающий риск заболевания раком, тремя процентами. Однако эти границы были установлены для миссий, предназначенных для полетов на околоземной орбите, в ближайшее время они могут быть пересмотрены с учетом более далеких полетов, считает Хасслер.

"NASA работает с Институтом Медицины Национальной Академии Наук, чтобы оценить, какими будут приемлемые границы для дальних космических полетов, таких, как миссия на Марс", - заявляет Хасслер.

Новые результаты представляют собой наиболее полную на данный момент картину радиационного окружения на пути к Марсу и на поверхности Красной Планеты. В них входят данные, которые RAD собрал за 8 месяцев, которые длилось космическое путешествие к Марсу, и в течение первых 300 дней на планете, - с августа 2012 года.

Измерения RAD охватывают два разных типа излучения энергетических частиц – галактических космических лучей, которые ускоряются до невероятных скоростей взрывами отдаленных сверхновых, и солнечных энергетических частиц, которые выбрасываются в космос штормами, которые происходят на Солнце.

Данные RAD показывают, что космонавты, исследующие поверхность Марса, будут получать дозу, равную приблизительно 0.64 миллизиверта каждый день. Во время путешествия к Марсу уровень радиации будет выше приблизительно в три раза - 1.84 миллизиверта каждый день.

Однако, Хасслер подчеркивает, что радиационное окружение Марса динамично, поэтому измерения Curiosity – не окончательные. Например, данные RAD были собраны во время пика 11-летнего цикла солнечной активности, в то время, когда поток галактических космических лучей относительно низкий (так как солнечная плазма обычно рассеивает солнечные лучи).

Измерения, сделанные Curiosity, должны помочь NASA в планировании пилотируемой миссии к Марсу, которую космическое агентство планирует запустить в середине 2030-х. Так же они дают информацию, которая помогает в поисках признаков жизни на Красной Планете в настоящем или прошлом – еще одна из главных задач, поставленных NASA.

Например, Хасслер заявляет, что новые результаты исследований RAD позволяют предположить, что на поверхности Марса найти признаки жизни будет затруднительно. "Эти измерения говорят нам о том, что признаки жизни на планете в прошлом можно найти на глубине около 1 метра", - говорит Хасслер.